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Abstract
Based on Maslov’s complex germ method, a semiclassical asymptotic in a
class of semiclassically concentrated functions is constructed for the one-
dimensional Fokker–Planck equation with a nonlocal nonlinearity. The
Einstein–Ehrenfest system describing the dynamics of mean values of
coordinates and centred momenta is formulated. A nonlinear transition density
is constructed.

PACS numbers: 03.65.Sq, 05.20−y, 05.70

1. Introduction

The Fokker–Planck equation3 describes many interesting phenomena in thermodynamics,
chemistry, evolutionary biology and quantitative social science where fluctuations are involved
(see, e.g., [1, 2]). This equation has also been useful for studying the dynamical behaviour of
stochastic differential equations driven by Gaussian noise. Recently there has been a revival of
interest in describing a wide class of stochastic phenomena on the basis of the Fokker–Planck
equation with different kinds of nonlinearities [3–20].

The concept of anomalous diffusion appears when the external stochastic indignation
cannot be counted to be of Gaussian type. In this case a nonlinear Fokker–Planck equation
with local nonlinearity [10] must be used. To mention only a few examples, maximum entropy
solutions to nonlinear Fokker–Planck equations within a general thermostatistical formalism
were constructed in [18]. Nonlinear Fokker–Planck equations admit peculiar time-dependent

3 In the mathematical literature this equation is also called the forward Kolmogorov equation or the Fokker–Planck–
Kolmogorov equation.
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solutions of Tsallis MaxEnt form that are of relevance in describing the transport of fluids in
porous media. Besides, nonlinear Fokker–Planck equations and their Tsallis MaxEnt solutions
have been applied to the study of the process of correlated anomalous diffusion.

In [4, 20] different types of nonlinear Fokker–Planck equations with local and nonlocal
nonlinearity were studied. Such nonlinear Fokker–Planck equations were shown to be related
to the Renyi entropy, as well as to entropies proposed by Sharma and Mittal. The power-low-
type equilibrium distributions of Tsallis thermostatistics were investigated from the viewpoint
of nonequilibrium free energies, and the stability analysis of their solutions was carried out.

Methods of exact integration of equations of this class are few in number. By now,
only a few particular cases of solving such equations are known, which are of considerable
interest in view of the complexity of the problem. Worth mentioning in this context is
the case presented in [20], where exact time-dependent solutions representing generalized
one-dimensional Ornstein–Uhlenbeck processes were derived from nonlinear Fokker–Planck
equations.

However, in general one is limited to the construction of stationary solutions. Then
asymptotic methods of integration of such equations must be used. The WKB–Maslov method
[21, 22] is one of the most advanced asymptotic methods. This work is devoted to applications
of this method to the construction of asymptotic solutions of the nonlinear Fokker–Planck
equation.

The Cauchy problem with a narrow initial distribution (i.e. with a small variance in the
initial moment of time) for the Fokker–Planck equation is similar to that of constructing wave
packets in quantum mechanics. Based on the complex WKB method (or Maslov’s complex
germ method) [22, 23] a procedure for building asymptotic solutions of the Schrödinger
equation in the form of localized wave packets has been developed [24]. Solutions of such
a kind were called semiclassically concentrated solutions (or states) which generalize the
well-known coherent and squeezed states of quantum mechanics (see, e.g., [25, 26]). Another
important application of this method is the construction of asymptotic solutions for the Cauchy
problem related to the Hartree-type equation with a smooth potential [27, 28].

The purpose of this paper is to apply the asymptotic method to nonlinear Fokker–Planck
equations (NLFPE) with a nonlocal nonlinearity for the case of narrow initial distributions

−D
∂u(x, t)

∂t
+ Ĥ�(t)u = 0, (1.1)

Ĥ�(t)u = D2 ∂

∂x
B(x, t)

∂u(x, t)

∂x
+ D

∂

∂x
A(u, x, t)u(x, t), (1.2)

A(u, x, t) = Vx(x, t) + �

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy. (1.3)

Here u(x, t) is a normalized time-dependent probability distribution function, D is a small
parameter, B(x, t), V (x, t) and W(x, y, t) are some fixed infinitesimal smooth functions
growing at |x|, |y| → ∞ not faster than a polynomial. In the equation above we used the
notation φx = ∂φ(x, y, t)/∂x. The function B(x, t) can be treated as the diffusion coefficient,
while A(u, x, t) is the drift coefficient. Equation (1.1) is nonlinear because the drift coefficient
(1.3) depends on the distribution function.

For a many-body system of identical particles the function W(x, y, t) is the pair interaction
potential. In this case (see, e.g., [5, 12, 19]) the original many-body problem has been reduced
to the one-body problem with mean-field-type interaction. As a result, equation (1.1) involves
a term representing the nonlocal feedback from the entire system. The nonlocal potential in
equation (1.1) generalizes those studied in earlier works [3, 4, 6–8, 16–19].
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Note that for a special class of equations (1.2) semiclassically concentrated solutions
were constructed in [29]. Another interesting application can be found in [30] where a
semiclassical asymptotic concentrated on invariant Lagrange tori for the Fokker–Planck–
Kolmogorov equation was constructed.

In this work we consider the Cauchy problem for the one-dimensional Fokker–Planck
equation (1.1) and construct a semiclassical asymptotic (with a power accuracy O(D3/2),
D → 0) in a class of semiclassically concentrated functions. The nonlinear evolution operator
and the nonlinear transition density are obtained (with the same accuracy) in an explicit form
in the functional space chosen. The key point of the method is the integration of an auxiliary
system of ordinary differential equations (the Einstein–Ehrenfest system). Solutions of this
system allow one to construct an associated linear Fokker–Planck equation (ALFPE). In turn,
solutions of the latter make it possible to find those of the nonlinear Fokker–Planck equation
with a given accuracy.

2. Trajectory-concentrated functions

A class of trajectory concentrated functions is the key point in the asymptotic integration
method proposed in [24, 28]. Let us search for an asymptotic solution to equation (1.1)
in a class of functions depending on the trajectory x = X(t,D), a real function S(t,D)

(an analogue of the classical action functional) and a small parameter D. As D → 0 these
functions are concentrated in a neighbourhood of a point moving along a given curve in the
configuration space x = X(t, 0) and are called trajectory-concentrated functions.

In what follows we denote the class of such functions as PD
t (X(t,D), S(t,D)) and

specify it in the following way:

PD
t = PD

t (X(t,D), S(t,D))

=
{
� : �(x, t,D) = ϕ

(
�x√

D
, t,D

)
exp

[
1

D
S(t,D)

]}
, (2.1)

where the real function ϕ(η, t,D) belongs to the Schwartz space S in the variable η ∈ R.
Besides, the function is assumed to have a smooth dependence on t and a regular dependence
on

√
D, as D → 0. In the equation above we denoted �x = x−X(t,D) and the real functions

S(t,D) X(t,D) characterizing the class PD
t (X(t,D), S(t,D)) depend on

√
D regularly in a

neighbourhood of D = 0. In what follows, where it does not cause a misunderstanding, we
use a shorthand PD

t for PD
t (X(t,D), S(t,D)).

As was shown in [24, 29], for a function from the class PD
t the asymptotic estimations

for
‖p̂k�xlu‖

‖u‖ = O(D(k+l)/2), D → 0,

‖[D∂t + Ẋ(t,D)D∂x − Ṡ(t,D)]u‖
‖u‖ = O(D), D → 0,

(2.2)

hold, where p̂ = D∂x . In particular, from equation (2.2) one finds the following estimations
for the operators p̂ = Ô(

√
D),�x = Ô(

√
D).

In constructing asymptotic solutions, it is useful to define, along with the class PD
t , the

following class of functions:

CD
t = CD

t (X(t,D), S(t,D))

=
{
� : �(x, t,D) = ϕ

(
�x√

D
, t

)
exp

[
1

D
S(t,D)

]}
, (2.3)

where the functions ϕ are independent of D. It is obvious that CD
t ∈ PD

t .
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3. Einstein–Ehrenfest system

In [24] a new approach to the semiclassical approximation in nonrelativistic mechanics has
been proposed. It was shown that, on the class of trajectory-concentrated functions, the
semiclassical approximation is equivalent to the replacement of the Schrödinger equation by
a finite system of ordinary differential equations of first order. In stochastic systems this
approach is based on the following obvious fact: the description of a stochastic system in
terms of its probability distribution function is completely equivalent to that in terms of an
infinite system of centred moments. The latter are uniquely specified by the distribution
function (moments problem) which, in turn, is completely determined by an infinite system of
moments. In contrast to the linear Fokker–Planck equation, for the nonlinear equation (1.1) a
set of equations for centred moments is essentially used for the semiclassically concentrated
solutions.

Let us assume that for the nonlinear equation (1.1) there exist exact (or differing by a
quantity of order O(D∞)) solutions in the class of trajectory-concentrated functions with
the initial value ϕ(x,D) ∈ PD

0 . The mean values of the operators x and (�x)k, k = 1,∞
corresponding to the solution u(x, t,D) will be denoted by

xu(t,D) = 〈x〉 =
∫ ∞

−∞
xu(x, t,D) dx, (3.1)

α(k)
u (t,D) = 〈(�x)k〉 =

∫ ∞

−∞
[x − xu(t,D)]ku(x, t,D) dx. (3.2)

The mean value of the operator x evolves according to the relation

d

dt
〈x̂〉 =

∫ ∞

−∞
xut (x, t,D) dx

=
∫ ∞

−∞
x

{
D[B(x, t)ux(x, t)]x +

[
Vx(x, t)u(x, t)

+ �u(x, t)

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

]
x

}
dx

=
∫ ∞

−∞

{
DBx(x, t) − Vx(x, t) − �

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

}
u(x, t) dx.

Then one finds

d

dt
〈x̂〉 =

〈[
DBx(x, t) − Vx(x, t) − �

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

]〉
. (3.3)

In turn, the mean value of the operator (�x)k , k = 1,∞ is determined by

d

dt
〈(�x)n〉 =

∫ ∞

−∞
(�x)nut (x, t,D) dx − n

d〈x〉
dt

∫ ∞

−∞
(�x)n−1u(x, t,D) dx

=
∫ ∞

−∞
(�x)n

{
D[B(x, t)ux(x, t)]x +

[
Vx(x, t)u(x, t)

+ �u(x, t)

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

]
x

}
dx − nẋu(t,D)α(n−1)

u (t,D)

= −n

∫ ∞

−∞
(�x)n−1

{
DBx(x, t) − Vx(x, t)
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− �

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

}
u(x, t) dx

+ Dn(n − 1)

∫ ∞

−∞
(�x)n−2B(x, t)u(x, t) dx − nẋu(t,D)α(n−1)

u (t,D),

which gives

d

dt
〈(�x)n〉 = −n

〈
(�x)n−1

[
DBx(x, t) − Vx(x, t) − �

∫ ∞

−∞
Wx(x, y, t)u(y, t) dy

]〉
+ Dn(n − 1)〈(�x)n−2B(x, t)〉 − nẋu(t,D)α(n−1)

u (t,D). (3.4)

In particular, by making use of estimation (2.2) for the mean values of the operators x and
(�x)k , k = 1,M one has

ẋu = −
M∑

k=0

{
1

k!

[
∂kVx(t)

∂xk
− D

∂kBx(t)

∂xk

]
α(k)

u + �

M∑
l=0

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k)

u α(l)
u

}
+ O(D(M+1)/2),

(3.5)

α̇(n)
u = −n

M−n+1∑
k=0

{
1

k!

[
∂kVx(t)

∂xk
− D

∂kBx(t)

∂xk

]
α(k+n−1)

u + �

M∑
l=0

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k+n−1)

u α(l)
u

}

+ Dn(n − 1)

M−n+1∑
k=0

1

k!

∂kB(t)

∂xk
α(k+n−2)

u − nẋuα
(n−1)
u + O(D(M+1)/2). (3.6)

Let us consider then a system of ordinary differential equations with respect to the variables
x and α(n), n = 1,M ,

ẋ = −
M∑

k=0

{
1

k!

[
∂kVx(t)

∂xk
− D

∂kBx(t)

∂xk

]
α(k) + �

M∑
l=0

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k)α(l)

}
,

α̇(n) = −n

M−n+1∑
k=0

{
1

k!

[
∂kVx(t)

∂xk
− D

∂kBx(t)

∂xk

]
α(k+n−1)

+ �

M∑
l=0

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k+n−1)α(l)

}
+ Dn(n − 1)

M−n+1∑
k=0

1

k!

∂kB(t)

∂xk
α(k+n−2)

+ nα(n−1)

M∑
k=0

{
1

k!

[
∂kVx(t)

∂xk
− D

∂kBx(t)

∂xk

]
α(k) + �

M∑
l=0

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k)α(l)

}
.

(3.7)

We define the initial conditions for system (3.7) according to the prescription

x|t=0 = xϕ =
∫ ∞

−∞
xϕ(x,D) dx,

α(k)|t=0 = α(k)
ϕ =

∫ ∞

−∞
(x − xϕ)kϕ(x,D) dx, k = 1,M.

(3.8)

In what follows we call the system of equations (3.8) the Einstein–Ehrenfest system of order
M for the NLFPE. The solutions of the system will be denoted by

x = x(M)
ϕ (t,D), α(k) = α(k,M)

ϕ (t,D), k = 1,M, (3.9)

y(M)
ϕ (t,D) = (

x(M)
ϕ (t,D), α(1,M)

ϕ (t,D), α(2,M)
ϕ (t,D), . . . , α(M,M)

ϕ (t,D)
)
. (3.10)

The following statement holds true.
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Proposition 1. The solutions of the Einstein–Ehrenfest system of order M, x(M)
ϕ (t,D) and

α(k,M)
ϕ (t,D), k = 1,M , and the mean values (3.1), (3.2) are connected according to the rule

xu(t,D) = x(M)
ϕ (t,D) + O(D(M+1)/2), t ∈ [0, T ]

α(k)
u (t,D) = α(k,M)

ϕ (t,D) + O(D(M+1)/2), k = 1,M,
(3.11)

where u = u(x, t,D) is a semiclassically concentrated solution of the NLFPE with the initial
condition ϕ(x,D) ∈ PD

0 .

It can readily be noted that the solutions of the Einstein–Ehrenfest system may be useful
for the Fokker–Planck equation with a local nonlinearity. Thus, the condition of the central
moment of the second order will be limited in t, i.e. |α(2)| � M,M = const. For the nonlinear
Schrödinger equation it corresponds to the condition of the existence (nonexistence) of
solitons [28].

4. Associated LFPE

We will search for a solution to equation (1.1) in the class PD
t (xu(t,D), S(t,D)) (2.1), with

the function S(t,D) to be specified below. To this end, let us Taylor expand the function
W(x, y, t) in powers of �y = y − xu(t,D)

∂u(x, t)

∂t
= D

∂

∂x
B(x, t)

∂u(x, t)

∂x
+

∂

∂x

[ (
Vx(x, t)

+ �

M∑
l=0

1

l!

∂lWx(x, y, t)

∂yl

∣∣∣∣
y=xu(t,D)

α(l)
u (t,D)

)
u(x, t)

]
+ O(D(M+1)/2). (4.1)

Let us consider an auxiliary equation which follows from equation (4.1) after the change of
the mean values (3.2) by the solutions of the Einstein–Ehrenfest system of order M (3.7)

∂v(x, t)

∂t
= D

∂

∂x
B(x, t)

∂v(x, t)

∂x
+

∂

∂x
[	(M)(x, t)v(x, t)] + O(D(M+1)/2), (4.2)

	(M)
(
x, t, y(M)

ϕ (t,D)
) = Vx(x, t) + �

M∑
l=0

1

l!

∂lWx

(
x, x(M)

ϕ (t,D), t
)

∂yl
α(l,M)

ϕ (t,D). (4.3)

Making use of estimations (3.11), one arrives at

Proposition 2. If semiclassically concentrated solutions of equations (4.1) and (4.2) obey one
and the same initial condition

u|t=0 = v|t=0 = ϕ(x,D), ϕ(x,D) ∈ PD
0 , (4.4)

then the solutions of (4.1) and (4.2) are connected in the following way:

u(M)(x, t,D) = v(M)(x, t,D) + O(D(M+1)/2), (4.5)

where u(x, t,D) is a semiclassically concentrated solution of the NLFPE with the initial
condition (4.4).

In what follows we call equation (4.2) the associated linear Fokker–Planck equation of
order M.

Taking into account the estimations (2.2), which are valid in the class
PD

t

(
x(M)

ϕ (t,D), S(t,D)
)
, let us represent equation (4.2) in the form[

L̂
(M)
0

(
y(M)

ϕ (t,D)
)

+
√

DL̂
(M)
1

(
y(M)

ϕ (t,D)
)

+ DL̂
(M)
2

(
y(M)

ϕ (t,D)
)

+ · · · ]v = 0, (4.6)
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where

L̂
(M)
0

(
y(M)

ϕ (t,D)
) = D∂t + ẋ(M)

ϕ (t,D)D∂x

−	(M)
x

(
x(M)

ϕ (t,D), t
)
D∂x�x − B

(
x(M)

ϕ (t,D), t
)
D2∂2

x

√
DL̂

(M)
1

(
y(M)

ϕ (t,D)
) = −1

2
	(M)

xx

(
x(M)

ϕ (t,D), t
)
D∂x�x2 − Bx

(
x(M)

ϕ (t,D), t
)
D∂x�xD∂x

+

{
1

1!

[
∂Vx(t)

∂x
− D

∂Bx(t)

∂x

]
α(1)(t,D)

+ �
∑
k+l=1

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k)(t,D)α(l)(t,D)

}
D∂x,

(4.7)

DL̂
(M)
2

(
y(M)

ϕ (t,D)
) = − 1

3!
	(M)

xxx

(
x(M)

ϕ (t,D), t
)
D∂x�x3

− 1

2
Bxx

(
x(M)

ϕ (t,D), t
)
D∂x(�x)2D∂x

+

{
1

2!

[
∂2Vx(t)

∂x2
− D

∂2Bx(t)

∂x2

]
α(2)(t,D)

+ �
∑
k+l=2

1

k!l!

∂k+lWx(t)

∂xk∂yl
α(k)(t,D)α(l)(t,D)

}
D∂x,

. . . .

It follows from equation (2.2) that
√

DkL̂k

(
y(M)

ϕ (t,D)
) = Ô(Dk/2).

Let us search for the trajectory-concentrated solutions of equation (4.6)
(
u(x, t,D) ∈ PD

t

)
in the form

v(x, t,D) = v(0)(x, t,D) +
√

Dv(1)(x, t,D) + Dv(2)(x, t,D) + · · · , (4.8)

where v(k)(x, t,D) ∈ CD
t

(
x(M)

ϕ (t,D), S(t,D)
)
. Substituting (4.8) in (4.6) and comparing the

terms having the same estimation in D (in the sense of (2.2)) one arrives at the recurrent system
of equations

L̂
(M)
0

(
y(M)

ϕ (t,D)
)
v(0) = 0,

L̂
(M)
0

(
y(M)

ϕ (t,D)
)
v(1) + L̂

(M)
1

(
y(M)

ϕ (t,D)
)
v(0) = 0,

L̂
(M)
0

(
y(M)

ϕ (t,D)
)
v(2) + L̂

(M)
1

(
y(M)

ϕ (t,D)
)
v(1) + L̂

(M)
2

(
y(M)

ϕ (t,D)
)
v(0) = 0,

. . . .

(4.9)

We then look for a particular solution to equation (4.9) and take the ansatz

v
(0)
0 (x, t,D) = ND exp

{
1

D

[
S(t,D) +

1

2
Q(t)�x2

]}
, (4.10)

where ND is a normalization constant and Q(t) will be fixed below. Plugging equation (4.10)
into equation (4.9) and comparing terms of the same power in �x, one ends up with the
following system of equations:

Ṡ − D	(M)
x

(
x(M)

ϕ (t,D), t
) − 2DB

(
x(M)

ϕ (t,D), t
)
Q = 0, (4.11)

1
2Q̇ − 	(M)

x

(
x(M)

ϕ (t,D), t
)
Q − 2B

(
x(M)

ϕ (t,D), t
)
Q2 = 0. (4.12)
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From equation (4.11) one finds that

S(t,D) = D

∫ t

0

[
	(M)

x

(
x(M)

ϕ (t,D), t
)

+ 2B
(
x(M)

ϕ (t,D), t
)
Q(t)

]
dt. (4.13)

In analogy with the Hartree-type equation [27, 28], we then search for a symmetry operator
of equation (4.9) in the form

â(t) = Na[Z(t)p̂ − W(t)�x], (4.14)

where Na is a constant. The functions Z(t) and W(t) will be fixed from the condition[
L̂0

(
y(M)

ϕ (t,D)
)
, â(t)

] = 0. (4.15)

Equation (4.15) holds if Z(t) and W(t) obey the system of equations{
Ẇ = −	(M)

x

(
x(M)

ϕ (t,D), t
)
W,

Ż = 2B
(
x(M)

ϕ (t,D), t
)
W + 	(M)

x

(
x(M)

ϕ (t,D), t
)
Z.

(4.16)

We will call (4.16) the system in variations for equation (4.5). One can prove the validity of
the relations (the details can be found in [24])

Q(t) = W(t)

Z(t)
, exp

[
1

D
S(t,D)

]
=

√
Z(0)

Z(t)
, (4.17)

which also imply the equality

v
(0)
0 (x, t,D) = ND

√
Z(0)

Z(t)
exp

[
1

2D

W(t)

Z(t)
�x2

]
. (4.18)

For the system in variations (4.16) let us choose the initial conditions

W |t=0 = ±b, Z|t=0 = 1, b > 0, (4.19)

and denote the solution of (4.16) as

a±(t) = (W±(t), Z±(t)). (4.20)

The sign in the latter correlates with that in equation (4.19).
Because the skew-orthogonal scalar product is conserved on solutions of the system in

variations (4.16)

{a−(t), a+(t)} = W−(t)Z+(t) − Z−(t)W +(t) = −2b, (4.21)

vectors (4.20) provide conjugate solutions.
Let us choose the constant Na± in operators (4.14) assuming that the condition

[â−(t), â+(t)] = 1, (4.22)

holds. Then one finds

â±(t) = 1√
2bD

[Z±(t)p̂ + W±(t)�x]. (4.23)

Note that the function

v
(0)
0 (x, t,D) = ND√

Z−(t)
exp

[
1

2D

W−(t)

Z−(t)
�x2

]
, ND = 4

√
b

Dπ
(4.24)

is a ground state for the operator â−(t):

â−(t)v
(0)
0 (x, t,D) = 0. (4.25)
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As a next step, we consider the set of functions having the form

v(0)
n (x, t,D) = 1√

n!
(â+(t))nv

(0)
0 (x, t,D). (4.26)

Making use of the Rodrigues formula for the Hermite polynomials [31]

Hn(ξ) = (−1)n eξ 2
(e−ξ 2

)(n),

one finds

v(0)
n (x, t,D) = (−1)n√

2nn!

[
Z−(t)

Z+(t)

]n/2

Hn

(√
b

DZ+(t)Z−(t)
�x

)
v

(0)
0 (x, t,D). (4.27)

As a consequence of the definitions of â±(t) and v
(0)
0 (x, t,D), functions (4.27) solve

equations (4.9) for an arbitrary natural n.
Now, let us consider a system of auxiliary functions

w(0)
n (x, t,D) = (−1)n√

2nn!

[
Z+(t)

Z−(t)

]n/2

Hn

(√
b

DZ+(t)Z−(t)
�x

)
w

(0)
0 (x, t,D), (4.28)

where

w
(0)
0 (x, t,D) = ND√

Z+(t)
exp

[
1

2D

W +(t)

Z+(t)
�x2

]
. (4.29)

One can prove that systems (4.27) and (4.28) are bi-orthonormal.
By analogy with the Schrödinger and Hartree-type equations, we will call functions (4.27)

semiclassical trajectory-coherent solutions of the Fokker–Planck equation (2.1).
The following theorem holds:

Theorem 1. 1. The functions v(0)
n (x, t,D) are asymptotic solutions of equation (2.1), to the

order O(D3/2) and obey the condition

u|t=0 = ϕ(x,D) = v(0)
n (x, 0,D). (4.30)

2. The bi-orthogonal system of functions
{
v(0)

n (x, t,D)
}∞

n=0 (4.27),
{
w(0)

n (x, t,D)
}∞

n=0
(4.28) is complete in L2

(
R

n
x

)
.

5. Transition density in a class of trajectory-concentrated functions

In this section we will construct a transition density G(0)(x, y, t) (a Green function, a kernel
of the evolution operator) for equation (3.10)

L̂0
(
y(M)

ϕ (t,D)
)
G(0) = 0, G(0)|t=0 = δ(x − y). (5.1)

Because the system (4.27), (4.28) is bi-orthonormal and the functions u(0)
n (x, t,D) solve

equation (3.10) for any n, the transition density (5.1) can be represented in the form

G(0)
(
x, y, t, s,D, y(M)

ϕ (t,D)
) =

∞∑
n=0

v(0)
n (x, t,D)w(0)

n (y, s,D). (5.2)

Substituting (4.27), (4.28) in (5.2) and taking into account the explicit form of v(0)
n (x, t,D)

and w(0)
n (y, t,D) one obtains
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G(0)
(
x, y, t, s,D, y(M)

ϕ (t,D)
)

=
∞∑

n=0

(−1)n

2nn!

√
b

Dπ

1√
Z−(t)Z+(s)

[
Z−(t)

Z+(t)

Z+(s)

Z−(s)

]n/2

×Hn

(√
b

DZ+(t)Z−(t)
�x

)
Hn

(√
b

DZ+(s)Z−(s)
�y

)

× exp

{
1

2D

[
W−(t)

Z−(t)
�x2 − W +(s)

Z+(s)
�y2

]}
, (5.3)

where �y = y − x0. Exploiting then Meler’s formula [31]
∞∑

n=0

1

n!

(
1

2z

)n

Hn(x)Hn(y) = 1√
1 − z2

exp

[
2xyz − z2(x2 + y2)

1 − z2

]
, (5.4)

for equation (5.3) one finds

G(0)
(
x, y, t, s,D, y(M)

ϕ (t,D)
)

=
√

b

Dπ

1√
Z−(t)Z+(s) − Z−(s)Z+(t)

exp

{
1

2D

[
W−(t)�x2

Z−(t)
+

W +(s)�y2

Z+(s)

]}
× exp

{
b

D

[
[2Z−(t)Z+(s)�x�y − Z+(s)Z−(s)�x2 − Z+(t)Z−(t)�y2]

[Z−(t)Z+(s)][Z−(t)Z+(s) − Z+(t)Z−(s)]

]}
.

(5.5)

Let us denote an operator with the kernel G(0)
(
x, y, t,D, y(M)

ϕ (t,D)
)

as Û (0)
(
t, y(M)

ϕ (t,D)
)
.

Then for the function

u(0)
ϕ (x, t,D) = Û (0)

(
t, y(M)

ϕ (t,D)
)
ϕ(x,D)

=
∫ ∞

−∞
G(0)

(
x, y, t,D, y(M)

ϕ (t,D)
)
ϕ(y,D) dy, (5.6)

where ϕ(x,D) ∈ PD
0 , the following statement holds.

Proposition 3. The function u(0)
ϕ (x, t,D) is an asymptotic solution of equation (1.1), to the

order O(D3/2) which obeys the initial condition

u|t=0 = ϕ(x,D). (5.7)

In concluding the paper we point out that the expressions constructed in this work for
the transition density of the nonlinear Fokker–Planck equation (1.1) can be generalized to the
case of both a nonlinear Fokker–Planck equation in a multidimensional space with smooth
coefficients of a general form and fractional Fokker–Planck-like equations. This can be
done using the results of [24, 27, 28]. This generalization will be valid in the sense of an
approximation to within Ô(D(M+1)/2),D → 0, where M is the order of the Einstein–Ehrenfest
system. Besides, mathematical constructions developed in this work could be helpful for the
description of a pairwise interaction in a system of particles subjected to regular and random
forces.
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